

Power SOC+ with 5V/2.1A Output and 1A linear Charger

DESCRIPTION

ETA9687 belong to a series of ETA Solutions pioneered Power SOC+. It is capable of delivering 2.1A at the 5V output and can charge at its input with up to 1A charging current. A highly integrated synchronous boost converter that can provide efficiency as high as 97% and a simple linear charge that provides fast charge current up to 1A are both integrated in ETA9687. Simple MCU functions are also included in ETA9687, such as, push-button, USB charging emulation, no load detection. All of these highly integrated features of ETA's Power SOC+ technology make ETA9687 an ideal solution for Power bank or applications alike.

ETA9687 is available in ESOP-8 package.

FFATURES

- Up to 97% Energy Converting Efficiency
- Up to 2.1A output current at 5V output, 3.3V input
- Dedicated Charging Port (DCP) emulator
- True Shut off during shutdown and output short-circuit protection
- Thermal Shutdown
- ◆ ESOP-8

APPLICATIONS

- Power Bank
- ◆ Tablet PC, MID

ORDERING INFORMATION

PART ID	PACKAGE	TOP MARK
ETA9687E8A	ESOP8	ETA9687
		YWW2L

TYPICAL APPLICATION

Typical application circuit of ETA9687

PIN CONFIGURATION

ABSOLUTEMAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

All Pins Voltage		0.3V	to 5.5V
Operating Temperature Range		40°	C to 85°
Storage Temperature Range		55°C t	:o 150°C
Thermal Resistance	Θ JC	θ_{JA}	
ESOP889023	10	58	ºC/W
Lead Temperature (Soldering, 11		260°C	
ESD HBM (Human Body Mode)			2KV
ESD MM (Machine Mode)			200V

ESOP-8

ELECTRICAL CHACRACTERISTICS

(V_BAT=3.6V, V_ACIN = 5V, unless otherwise specified. Typical values are at TA = 25oC.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	ZTINU	
SYNCHRONOUS BOOST						
Quiescent current	V_{BAT} =3.6V, V_{OUT} =5.5V, Device not switching		120	150	uA	
Shutdown Supply Current at VBAT	$V_{BAT} = 3.6V$, $V_{EN} = GND$		6	10	uA	
V _{BAT} UVLO at Rising			3.1		V	
V _{BAT} UVLO at Falling			2.6		V	
V _{DUT}	Output Voltage	4.90	5.03	5.15	V	
Low Side Main FET R _{DSON}	V _{OUT} =5V		90		mΩ	
Synchronous FET Roson	V _{OUT} =5V		50		mΩ	
Switch Frequency			1		MHZ	
Main FET Current Limit			4.2		A	
SW Leakage Current	Vout=5V, Vsw=0 or 5V, V _{EN} =GND	-1	0	1	uА	
Thermal Shutdown	Rising, Hysteresis=20°C		150		оС	
LINEAR CHARGER						
BAT CV Voltage		4.16	4.20	4.24	V	
Charger Restart Threshold	From Done to FastCharge	150	·	220	m۷	
BAT Pre-condition Voltage		2.65	2.87	3.1	V	
Pre-condition Charger Current		50	80	110	mΑ	
ACIN fast Charge Current	R _{ISET} =1K		1000		mÅ	

PIN DESCRIPTION

PIN#	NAME	DESCRIPTION	
1	ACIN	Charger input pin. Connect to an AC adaptor or a USB charger output.	
2	BAT	Battery input pin. Bypass BAT to GND with a 10uF or greater ceramic capacitor.	
3	D+/D-	Connect to the D+ and D- line of USB connect, provide the correct voltage with attached portable	
		equipment for USB Dedicated Charging Port (DCP) Emulator.	
4	SW	Switching node of the Switching Regulator. Connect a 1uH to 2.2uH inductor between IN and SW	
		pin.	
5	OUT	Output pin. Bypass with a 22uFx2 or larger ceramic capacitor closely between this pin and ground.	
6	GND	Ground.	
7	LED	Battery level display	
8	ISET	Charge Current set pin for AC input. Connecting a Resistor (Rset) between ISET to GND. This sets	
		the fast charge current value as Icharge=1000/Rset (mA)	

TYPICAL CHARACTERISTICS

(Typical values are at $T_A=25^{\circ}C$ unless otherwise specified.)

ETA9687 Efficiency Vs. lout

100%
98%
96%
94%
92%
92%
88%
88%
84%
Vin=4.0V
80%
0 0.5 1 1.5 2
lout (A)

Output Short Circuit Protection: VBAT=4.2V

PCB GUIDELINES

A well designed PCB is very important to obtain the best performance of ETA9687. A typical illustration of PCB guide is shown below:

Please always place the output capacitor (Cout) as close to the chip (ETA9687) as possible.

THERMAL CONSIDERATIONS

As the ETA9687 has a power MOSFET with internal current limit up to 5A, heat dissipation is always needed to be considered when designing the PCB for such high-power step-up converter. ETA9687 employs a package of ESOP8 with only 10 0 C/W thermal resistance from chip to its thermal pad. So it is crucial for one to lay a large area of copper (in most case, it is the large ground plane), directly contacting the thermal pad of the chip through more than 2 large vias from bottom, to spread the heat away to the ambient environment as fast as possible.

A thicker copper foil is always recommended to help the heat dissipation, so a PCB with 2oz copper thickness is a much better choice than that of loz copper.

PACKAGE DUTLINE

Package: ESOP8

